Concurrent Grouping
TOR | Resources | Bibliographies | MPCL
MPCL Bibliographies: Concurrent Grouping
Compiled at the Music Perception and Cognition Laboratory (MPCL) — McGill University.
Updated March 28, 2022.
Alain, C. A., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1072–1089. https://doi.org/10.1037//0096-1523.27.5.1072
Assmann, P. F., & Summerfield, Q. (1990). Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. Journal of the Acoustical Society of America, 88(2), 680–697. https://doi.org/10.1121/1.399772
Assmann, P. F., & Summerfield, Q. (1994). The contribution of waveform interactions to the perception of concurrent vowels. Journal of the Acoustical Society of America, 95(1), 471–484. https://doi.org/10.1121/1.408342
Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112(36), 1–6. https://doi.org/10.1073/pnas.1505768112
Bregman, A. S., & Doehring, P. (1984). Fusion of simultaneous tonal glides: The role of parallelness and simple frequency relations. Perception and Psychophysics, 36(3), 251–256. https://doi.org/10.3758/BF03206366
Bregman, A. S., & Pinker, S. (1978). Auditory streaming and the building of timbre. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 32(1), 19–31. https://doi.org/10.1037/h0081664
Carpentier, G. ; T., D. ;. Harvey, J. ;. Assayag, G. ;. Saint-James, E. (2010). Predicting timbre features of instrument sound combinations: Application to automatic orchestration. Journal of New Music Research, 39(1), 47–61. https://doi.org/10.1080/09298210903581566
Cazden, N. (1980). The definition of consonance and dissonance. International Review of the Aesthetics and Sociology of Music, 11(2), 123–168. https://doi.org/10.2307/836494
Chan, D. ; S., E. (2004). Identifying the number of instruments in pairs of simultaneous sounding timbre. Canadian Acoustics, 34(4), 5–13.
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979. https://doi.org/10.1121/1.1907229
Chiasson, F. (2010). L’universalité de la méthode de Koechlin. In P. Cathé, S. Douche, & M. Duchesneau (Eds.), Charles Koechlin: Compositeur et humaniste (pp. 397–413). Editions J. Vrin.
de Cheveigné, A. (1993). Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing. Journal of the Acoustical Society of America, 93(6), 3271–3290.
de Cheveigné, A. (1997). Concurrent vowel identification. III: A neural model of harmonic interference cancellation. Journal of the Acoustical Society of America, 101(5), 2857–2865. https://doi.org/10.1121/1.419480
de Cheveigné, A. (1998). Cancellation model of pitch perception. Journal of the Acoustical Society of America, 103(3), 1261–1271. https://doi.org/10.1121/1.423232
de Cheveigné, A. (1999). Waveform interactions and the segregation of concurrent vowels. Journal of the Acoustical Society of America, 106(5), 2959–2972. https://doi.org/10.1121/1.428115
Fales, C., & McAdams, S. (1994). The fusion and layering of noise and tone: Implications for timbre in African instruments. Leonardo Music Journal, 4, 69–77. https://doi.org/10.2307/1513183
Goodchild, M., & McAdams, S. (2018). Perceptual processes in orchestration. In E. Dolan & A. Rehding (Eds.), The Oxford handbook of timbre. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190637224.013.10
Goodwin, A. W. (1980). An acoustical study of individual voices in choral blend. Journal of Research in Music Education, 28(2), 119–128. https://doi.org/10.1177/002242948002800205
Johnson, R. (2011). The standard, power, and color model of instrument combination in romantic-era symphonic works. Empirical Musicology Review, 6(1), 2–19.
Kendall, R. A., & Carterette, E. C. (1993). Identification and blend of timbres as a basis for orchestration. Contemporary Music Review, 9(1–2), 51–67. https://doi.org/10.1080/07494469300640341
Lembke, S.-A., Levine, S., & McAdams, S. (2017). Blending between bassoon and horn players: An analysis of timbral adjustments during musical performance. Music Perception, 35(2), 144–164. https://doi.org/10.1525/MP.2017.35.2.144
Lembke, S.-A., & McAdams, S. (2015). The role of spectral-envelope characteristics in perceptual blending of wind-instrument sounds. Acta Acustica United with Acustica, 101(5), 1039–1051. https://doi.org/10.3813/AAA.918898
Lembke, S.-A., Parker, K., Narrmour, E., & McAdams, S. (2017). Acoustical correlates of perceptual blend in timbre dyads and triads. Musicae Scientiae, (published online). https://doi.org/10.1177/1029864917731806
Marin, C. M. H., & McAdams, S. (1996). The role of auditory beats induced by frequency modulation and polyperiodicity in the perception of spectrally embedded complex target sounds. Journal of the Acoustical Society of America, 100(3), 1736–1753. https://doi.org/10.1121/1.416071
McAdams, S. (1982). Spectral fusion and the creation of auditory images. In M. Clynes (Ed.), Music, Mind and Brain: The Neuropsychology of Music (pp. 278–298). Plenum Press.
McAdams, S. (1989). Segregation of concurrent sounds.1. Effects of frequency-modulation coherence. Journal of the Acoustical Society of America, 86(6), 2148–2159. https://doi.org/10.1121/1.398475
McAdams, S., Gianferrara, P., Soden, K., & Goodchild, M. (2016). Factors influencing instrument blend in orchestral excerpts. 14th Biennial Meeting of the International Conference on Music Perception and Cognition, San Francisco.
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual Differences Reveal the Basis of Consonance. Current Biology, 20, 1035–1041. https://doi.org/10.1016/j.cub.2010.04.019
Peynircioğlu, Z. F. ; B., W. ;. Falco, D. E. (2016)Peynircioğlu, Z. F. ; B., W. ;. Falco, D. E. (2016). Perception of blended timbres in music. Psychology of Music, 44(4), 625–639. https://doi.org/10.1177/0305735615578313
Roberts, B., & Bailey, P. J. (1993). Spectral pattern and the perceptual fusion of harmonics. II. A special status for added components? Journal of the Acoustical Society of America, 94, 3165–3177.
Roberts, B., & Bailey, P. J. (1993). Spectral pattern and the perceptual fusion of harmonics. I. The role of temporal factors. The Journal of the Acoustical Society of America, 94(6), 3153–3164. https://doi.org/10.1121/1.407221
Roberts, B., & Bailey, P. J. (1996). Regularity of spectral pattern and its effecs on the perceptual fusion of harmonics. Perception and Psychophysics, 58, 289–299.
Roberts, B., & Bregman, A. S. (1991). Effects of the pattern of spectral spacing on the perceptual fusion of harmonics. Journal of the Acoustical Society of America, 90, 3050–3060.
Sandell, G. J. (1989). Perception of concurrent timbres and implications for orchestration. International Computer Music Conference.
Sandell, G. J. (1991). Concurrent timbres in orchestration: A perceptual study of factors determining “blend” [Thesis]. Northwestern University.
Sandell, G. J. (1995). Roles for spectral centroid and other factors in determining “blended” instrument pairing in orchestration. Music Perception, 13(2), 209–246. https://doi.org/10.2307/40285694
Schneider, A. (1997). “Verschmelzung”, tonal fusion, and consonance: Carl Stumpf revisited. In M. Leman (Ed.), Music, Gestalt, and Computing (pp. 115–143). Springer. https://doi.org/10.1007/BFb0034111
Shields, R., & Kendall, R. (2004). The Relation of Timbre to Dissonance and Spectral Fusion (S. D. Lipscomb, R. Ashley, R. O. Gjerdingen, & P. Webster, Eds.).
Tardieu, D., & McAdams, S. (2012). Perception of dyads of impulsive and sustained instrument sounds. Music Perception, 30(2), 117–128. https://doi.org/10.1525/Mp.2012.30.2.117
Terhardt, E. (1974). Pitch, consonance, and harmony. Journal of the Acoustical Society of America, 55, 1061–1069.
Woods, K. J. P., & McDermott, J. H. (2018). Schema learning for the cocktail party problem. Proceedings of the National Academy of Sciences, 115(14), E3313–E3322. https://doi.org/10.1073/pnas.1801614115