TOR | Resources | Bibliographies | MPCL

MPCL Bibliographies: Absolute / Relative Timbre

Compiled at the Music Perception and Cognition Laboratory (MPCL) — McGill University.
Updated March 31, 2022.

Bibliography
Agus, T. R., Suied, C., Thorpe, S. J., & Pressnitzer, D. (2012). Fast recognition of musical sounds based on timbre. Journal of the Acoustical Society of America, 131(5), 4124–4133. https://doi.org/10.1121/1.3701865
Aramaki, M. ; B., M. J. ;. Kronland-Martinet, R. ;. Ystad, S. (2011). Controlling the perceived material in an impact sound synthesizer. IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 19(2), 301–314. https://doi.org/10.1109/TASL.2010.2047755
Beauchamp, J. (2011). Perceptually correlated parameters of musical instrument tones. Archives of Acoustics, 36(2), 225–238. https://doi.org/10.2478/v10168-011-0018-8
Berger, K. W. (1964). Some factors in the recognition of timbre. Journal of the Acoustical Society of America, 36(10), 1888–1891. https://doi.org/10.1121/1.1919287
Biederman, I. (1989). Recognition by components: A theory of human image understanding. Psychological Review, 96(1), 115–147. https://doi.org/10.1037//0033-295X.96.1.2
Bigand, E., Delbé, C., Gérard, Y., & Tillmann, B. (2011). Categorization of extremely brief auditory stimuli: Domain-specific or domain-general processes? PLOS One, 6(10), 1–6. https://doi.org/10.1371/journal.pone.0027024
Brefczynski-Lewis, J. A., & Lewis, J. W. (2017). Auditory object perception: A neurobiological model and prospective review. Neuropsychologia, Advance online publication.
Brown, J. C., Houix, O., & McAdams, S. (2001). Feature dependence in the automatic identification of musical woodwind instruments. Journal of the Acoustical Society of America, 109(3), 2001. https://doi.org/10.1121/1.1342075
Carello, C., Anderson, K. A., & Kunkler-Peck, A. J. (1998). Perception of object length by sound. Psychological Science, 9(3), 211–214. https://doi.org/10.1111/1467-9280.00040
Carello, C., Wagman, J. B., & Turvey, M. T. (2005). Acoustic specification of object properties. In J. D. Anderson & B. F. Anderson (Eds.), Moving image theory: Ecological considerations (pp. 79–104). Southern Illinois University Press.
Cipra, B. (1992). You can’t hear the shape of a drum. Science, 255, 1642–1643. https://doi.org/10.1126/science.255.5052.1642
Clark, M., Robertson, P., & Luce, D. (1964). A preliminary experiment on the perceptual basis for musical instrument families. Journal of the Audio Engineering Society, 12(3), 199–203.
Cutting, J. E., & Rosner, B. (1974). Categories and boundaries in speech and music. Perception and Psychophysics, 16(3), 564–570. https://doi.org/10.3758/BF03198588
Cutting, J. E., Rosner, B., & Foard, C. F. (1976). Perceptual categories for musiclike sounds: Implications for theories of speech perception. Quarterly Journal of Experimental Psychology, 28(3), 361–378. https://doi.org/10.1080/14640747608400563
Davies, S. (2008). Musical works and orchestral colour. British Journal of Aesthetics, 48(4), 363–375. https://doi.org/10.1093/aesthj/ayn048
De Poli, G., Rodá, A., & Vidolin, A. (1998). Note-by-note analysis of the influence of expressive intentions and musical structure in violing performance. Journal of New Music Research, 27(3), 293–321. https://doi.org/10.1080/09298210902773941
Donnadieu, S., McAdams, S., & Winsberg, S. (1996). Categorization, discrimination and context effects in the perception of natural and interpolated timbres. International Conference on Music Perception and Cognition.
Dupuis, S. (1999). Le rôle des transitions legato entre notes dans la reconnaissance des instruments de musique [Mémoire de DEA]. Ecole Polytechnique.
Ehresman, D., & Wessel, D. (1978). Perception of timbral analogies (Rapport IRCAM). IRCAM-Centre Pompidou. http://articles.ircam.fr/textes/Ehresman78a/
Eronen, A., & A., K. (2000). Musical instrument recognition using cepstral coefficients and temporal features. International Conference on Acoustics, Speech, and Signal Processing. https://doi.org/10.1109/ICASSP.2000.859069
Essid, S. ; R., G. ;. David, B. (2005). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 68–80. https://doi.org/10.1109/TSA.2005.860351
Frazier, J. M., Assgari, A. A., & Stilp, C. E. (2019). Musical instrument categorization is highly sensitive to spectral properties of earlier sounds. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-019-01675-x
Fujinaga, I., & MacMillan, K. (2000). Realtime recognition of orchestral instruments. 141.
Gaver, W. W. (1993). How do we hear in the world?: Exploration in ecological acoustics. Ecological Psychology, 5(4), 285–313. https://doi.org/10.1207/s15326969eco0504_2
Gaver, W. W. (1993). What in the world do we hear?: An ecological approach to auditory event perception. Ecological Psychology, 5(1), 1–29. https://doi.org/10.1207/s15326969eco0501_1
Giordano, B. L., & McAdams, S. (2006). Material identification of real impact sounds: Effects of size variation in steel, glass, wood, and plexiglass plates. Journal of the Acoustical Society of America, 119(2), 1171–1181. https://doi.org/10.1121/1.2149839
Giordano, B. L., & McAdams, S. (2010). Sound source mechanics and musical timbre perception: Evidence from previous studies. Music Perception, 28(2), 155–168. https://doi.org/10.1525/mp.2010.28.2.155
Guyot, P., Houix, O., Misdariis, N., Susini, P., Pinquier, J., & André-Obrecht, R. (2017). Identification of categories of liquid sounds. The Journal of the Acoustical Society of America, 142(2), 878–889. https://doi.org/10.1121/1.4996124
Gygi, B., Kidd, G., & Watson, C. S. (2004). Spectral-temporal factors in the identification of environmental sounds. Acoustical Society of America, 115(3), 1252–1265. https://doi.org/10.1121/1.1635840
Gygi, B., Kidd, G., & Watson, C. S. (2007). Similarity and categorization of environmental sounds. Perception and Psychophysics, 69(6), 839–855.
Hall, M. D., & Beauchamp, J. (2009). Clarifying spectral and temporal dimensions of musical instrument timbres. Canadian Acoustics, 37(1), 3–22.
Handel, S. (1995). Timbre perception and auditory object identification. In B. C. J. Moore (Ed.), Hearing (pp. 425–461). Academic Press. https://doi.org/10.1016/B978-012505626-7/50014-5
Heald, S. L. M., Hedger, V., Charles, S., & Nusbaum, H. C. (2017). Perceptual plasticity for auditory object recognition. Frontiers in Psychology, 8, 781. https://doi.org/10.3389/fpsyg.2017.00781
Herrera, P., Amatriain, X., Batlle, E., & Serra, X. (2000). Towards instrument segmentation for music content description: A critical review of instrument classification techniques. International Conference on Music Information Retrieval, Plymouth, Massachusetts.
Hjortkjær, J., & McAdams, S. (2016). Spectral and temporal cues for perception of material and action categories in impacted sound sources. Journal of the Acoustical Society of America, 140(1), 409–420. https://doi.org/10.1121/1.4955181
Isnard, V. (2016). L’efficacité du système auditif humain pour la reconnaissance de sons naturels [The efficiency of the human auditory system for the recognition of natural sounds] [Thesis]. Université Pierre et Marie Curie (Paris 6).
Kendall, R. A. (1986). The role of acoustic signal partitions in listener categorization of musical phrases. Music Perception, 4(2), 185–213. https://doi.org/10.2307/40285360
Klatzky, R. L., Pai, D. K., & Krotkov, E. P. (2000). Perception of material from contact sounds. Presence: Teleoperators and Virtual Environments, 9(4), 399–410. https://doi.org/10.1162/105474600566907
Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846–848. https://doi.org/10.1126/science.1070311
Krumhansl, C. L. (2010). Plink:" Thin slices" of music. Music Perception: An Interdisciplinary Journal, 27(5), 337–354. https://doi.org/10.1525/mp.2010.27.5.337
Kunkler-Peck, A. J., & Turvey, M. T. (2000). Hearing shape. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 279–294.
Leaver, A. M., & Rauschecker, J. P. (2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. Journal of Neuroscience, 30(22), 7604–7612. https://doi.org/10.1523/JNEUROSCI.0296-10.2010
Lemaitre, G., & Heller, L. M. (2012). Auditory perception of material is fragile while action is strikingly robust. Journal of the Acoustical Society of America, 131(2), 1337–1348. https://doi.org/10.1121/1.3675946
Lemaitre, G., & Heller, L. M. (2013). Evidence for a basic level in a taxonomy of everyday action sounds. Experimental Brain Research, 226(2), 253–264. https://doi.org/10.1007/s00221-013-3430-7
Lemaitre, G., Pyles, J. A., Halpern, A. R., Navolio, N., Lehet, M., & Heller, L. M. (2017). Who’s that Knocking at My Door? Neural Bases of Sound Source Identification. Cerebral Cortex, 2017, 1–14. https://doi.org/10.1093/cercor/bhw397
Lutfi, R. A., & Oh, E. L. (1997). Auditory discrimination of material changes in a struck-clamped bar. Journal of the Acoustical Society of America, 102(6), 3647–3656. https://doi.org/10.1121/1.420151
Martin, K. D., & Kim, Y. E. (1998). Musical instrument identification: A pattern‐recognition approach. Journal of the Acoustical Society of America, 104(3), 1768–1768. https://doi.org/10.1121/1.424083
Martinez-Castilla, P., Garcia-Nogales, A., Campos, R., & Rodriguez, M. (2015). Environmental sound recognition by timbre in children with Williams syndrome. Child Neuropsychology, 21(1), 90–105. https://doi.org/10.1080/09297049.2013.876492
Mathias, S. R., & von Kriegstein, K. (2014). How do we recognise who is speaking? Frontiers in Bioscience (Scholar Edition), S6, 92–109. https://doi.org/10.2741/S417
McAdams, S. (1993). Recognition of sound sources and events. In S. McAdams & E. Bigand (Eds.), Thinking Sound: The Cognitive Psychology of Human Audition (pp. 146–198). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198522577.003.0006
McAdams, S., Chaigne, A., & Roussarie, V. (2004). The psychomechanics of simulated sound sources: Material properties of impacted bars. Journal of the Acoustical Society of America, 115(3), 1306–1320. https://doi.org/10.1121/1.1645855
McAdams, S., & Cunibile, J.-C. (1992). Perception of timbral analogies. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 336(1278), 383–389. https://doi.org/10.1098/Rstb.1992.0072
McAdams, S., Roussarie, V., Chaigne, A., & Giordano, B. L. (2010). The psychomechanics of simulated sound sources: Material properties of impacted thin plates. Journal of the Acoustical Society of America, 128(3), 1401–1413. https://doi.org/10.1121/1.3466867
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467-9280.2008.02235.x
Nosofsky, R. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.
Nosofsky, R. (1992). Exemplar-based approach to relating categorization, identification, and recognition. In F. Ashby (Ed.), Multidimensional Models of Perception and Categorization. Erlbaum.
Ogg, M., Slevc, L. R., & Idsardi, W. J. (2017). The time course of sound category identification: Insights from acoustic features. Journal of the Acoustical Society of America, 142(6), 3459–3473. https://doi.org/10.1121/1.5014057
Palmer, C., Jones, R. K., Hennessy, B. L., Unze, M. G., & Pick, A. D. (1989). How is a trumpet known? The “basic object level” concept and perception of musical instruments. American Journal of Psychology, 102(1), 17–37. https://doi.org/10.2307/1423114
Park, T., & Lee, T. (2015). Musical instrument sound classification with deep convolutional neural network using feature fusion approach. ArXiv Preprint ArXiv:1512.07370.
Patel, A. D., & Iversen, J. R. (2003). Acoustic and perceptual comparison of speech and drum sounds in the North Indian tabla tradition: An empirical study of sound symbolism (M. J. Solé, D. Recasens, & J. Romero, Eds.; pp. 925–928). International Phonetic Association.
Patterson, R. D., Gaudrain, E., & Walters, T. C. (2010). The perception of family and register in musical tones. In M. R. Jones, R. R. Fay, & A. N. Popper (Eds.), Music Perception. Springer. https://doi.org/10.1007/978-1-4419-6114-3_2
Poulin-Charronnat, B., Bigand, E., Lalitte, P., Madurell, F., Vieillard, S., & McAdams, S. (2004). Effects of a change in instrumentation on the recognition of musical materials. Music Perception, 22(2), 239–263. https://doi.org/10.1525/Mp.2004.22.2.239
Pressnitzer, D., Agus, T., & Suied, C. (2015). Acoustic timbre recognition. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 128–133). Springer Publishing Company, Incorporated.
Reber, S. A., Janisch, J., Torregrosa, K., Darlington, J., Vliet, K. A., & Fitch, W. T. (2017). Formants provide honest acoustic cues to body size in American alligators. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-01948-1
Roark, C. L., & Holt, L. L. (2018). Task and distribution sampling affect auditory category learning. Attention, Perception, & Psychophysics, 80(7), 1804–1822. https://doi.org/10.3758/s13414-018-1552-5
Rosen, S. M., & Howell, P. (1981). Plucks and bows are not categorically perceived. Perception and Psychophysics, 30(2), 156–168. https://doi.org/10.3758/BF03204474
Saldanha, E. L., & Corso, J. F. (1964). Timbre cues and the identification of musical instruments. Journal of the Acoustical Society of America, 36, 2021–2126. https://doi.org/10.1121/1.1919317
Schellenberg, E. G., Iverson, P., & Mckinnon, M. C. (1999). Name that tune: Identifying popular recordings from brief excerpts. Psychonomic Bulletin & Review, 6(4), 641–646. https://doi.org/10.3758/BF03212973
Sidhu, D. M., & Pexman, P. M. (2018). Five mechanisms of sound symbolic association. Psychonomic Bulletin & Review, 25(5), 1619–1643. https://doi.org/10.3758/s13423-017-1361-1
Siedenburg, K., Jones-Mollerup, K., & McAdams, S. (2016). Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetries between acoustic and chimeric sounds. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01977
Staeren, N., Renvall, H., & Martino, F. de. (2009). Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex. Current Biology, 19, 498–502. https://doi.org/10.1016/j.cub.2009.01.066
Stoelinga, C. N. J., Hermes, D. J., Hirschberg, A., & Houtsma, A. J. M. (2003). Temporal aspects of rolling sounds: A smooth ball approaching the edge of a plate. Acta Acustica United with Acustica, 89(5), 809–817.
Strong, W., & Clark, M. (1967). Perturbations of synthetic orchestral wind-instrument tones. Journal of the Acoustical Society of America, 41(2), 277–285. https://doi.org/10.1121/1.1910337
Strong, W., & Clark, M. (1967). Synthesis of wind-instrument tones. Journal of the Acoustical Society of America, 41(1), 39–52. https://doi.org/10.1121/1.1910327
Suied, C., Agus, T. R., Thorpe, S. J., Mesgarani, N., & Pressnitzer, D. (2014). Auditory gist: Recognition of very short sounds from timbre cues. Journal of the Acoustical Society of America, 135(3), 1380–1391. https://doi.org/10.1121/1.4863659
ten Hoopen, C. (1994). Issues in timbre and perception. Contemporary Music Review, 10(2), 61–71. https://doi.org/10.1080/07494469400640301
Tervaniemi, M., Winkler, I., & Näätänen, R. (1997). Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. Neuro Report, 8(11), 2571–2574. https://doi.org/10.1097/00001756-199707280-00030
Thoret, E., Depalle, P., & McAdams, S. (2016). Perceptually salient spectrotemporal modulations for recognition of sustained musical instruments. Journal of the Acoustical Society of America, 140(6), EL478–EL483. https://doi.org/10.1121/1.4971204
Trehub, S. E., Endman, M. W., & Thorpe, L. A. (1990). Infants’perception of timbre: Classification of complex tones by spectral structure. Journal of Experimental Child Psychology, 49, 300–313.
van Dinther, R., & Patterson, R. D. (2006). Perception of acoustic scale and size in musical instrument sounds. Journal of the Acoustical Society of America, 120(4), 2158–2176. https://doi.org/10.1121/1.2338295
Wildes, R. P., & Richards, W. A. (1988). Recovering material properties from sound. In W. A. Richards (Ed.), Natural Computation (pp. 356–363). MIT Press.
Zhang, X. ; R., Z. W. (2007). Analysis of sound features for music timbre recognition. 3–8. https://doi.org/10.1109/MUE.2007.85

Other Bibliographies

Previous
Previous

Verbalization of Timbre

Next
Next

Representations of Timbre